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A Further Generalized Kettele Algorithm
With Multiple Constraints

A. Charnes
D. Zhang

Abstract

J.D. Kettele [1], using dynamic programming, developed a simple algorithm (KA) for

the optimal redundancy problem in reliability and life testing problems with a single

constraint . .. Proschan and T.B. Bray P] gave a generalization of Kettele's dynamic

programming algorithm to include multiple constraints. To solve a much broader class of
"-

optimization problems than in [11, R.E. Barlow aftd-lt. Proschan generalized the Kettele

algorithm (GKA) to apply to strictly increasing separable function problems with a single

constraint -[3]:

In this paper, we consider'a still more general optimization model and develop a Further

Generalized Kettele Algorithm' (FGKA) o apply to multiple constraints, etc. As an example, an

integer Lexicographic programming model will be solved.orol=HMy 1, sectton 2).0, Further-

more, another form of the more general optimization model is pointed out in section 4 of the

paper.
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1L. ntroution
Kettele [1] presents an algorithm for allocating redundancy so as to maximize system

reliability without exceeding a specified cost. Specifically, a system consisting of k "stages" is

considered. The system functions if and only if each stage functions. Stage i consists of ni (to be

determined) units of type i in parallel, so that stage functions if and only if at least one of ni

units of type i functions, i = 1, 2, . . . , k. Suppose unit i has a "cost" ci, i = 1, . . . , k. A

unit of type i has probability Pi of functioning, independently of the functioning or

nonfunctioning of the other units of the system. Thus system reliability is given by

P(n)=ii'k (i -(1-p)n') Then the problem considered in [11 is

==i=1

k

•max 1j -1pi ,

,0," k

S.t. _cini~c.
i i

ni > 0, integer,

where c is a limit "cost".

Proschan and Bray [2] generalize KA to solve the more general problem of maximizing

system reliability without exceeding any of several linear constraints, i.e., specifically,

iii I
k

i-1"s.t. c_ q n 1:< cj, (j= 1, 2 , .. . r,

ni > 0, integer,

where cij is the "cost" of the unit i of the jth type, i =1, .... k; j =1 .... r, and cj is the

0 limit "cost" of the jth type. As an example, the first type of cost might be money, the second

weight, the third volume, the fourth population rate.

Barlow and Proschan [3] then give a Generalized Kettele Algorithm to solve an

.4', . optimization model more general than in [1] as follows. Suppose x1, .... xk are k variables

-T

0 =

.'. ,.. . . . ..-



called "decision variables"; xi e Si = (xi <xi < .... , i = 1, .... k. Letx'i=(x. . x,), i = 1,

* . . , . k. Assume fi, .. fk are strictly increasing functions, with yl(xl)= fl (xl),

Y2 x' =f 2 (Y 1, x2), y3 (x3)=f3(y2 , x3), .... Yk ( k)=fkYk-1, Xk). Similarly, assume gi gk are

strictly increasing functions, with z1(x1) = g1(x1 ), z2 (2 = g2(zl, x2),

z3 (;a=g3 lz2,x .... ZkXk)=gk(zkl,Xk). It is suggestive to call xi an "allocation" of order i,

yi a "payoff" of order i, and zi a "cost" of order i (i = 1, . . , k) even though the model is

more general than these terms would indicate.

The Barlow and Proschan (B-P) model is

Max Yk(Xk),

S.t. ZkXkJ C, (2)

zXk=(Xl,...,Xk),- SSX,..,XSk,

where c is a limit "cost". In this model there is only a single constraint. The cost zk may not

be a sum of linear functions cx 1 , j = 1, .... k. It is strictly increasing in the number of

spares of each type.

B-P gave some examples (see examples and exercises, [3]) and pointed out that a great

many other models requiring optimization subject to a constraint arising in reliability, and

more generally in operations research, are special cases of the general optimization model.

F.. Such problems may be solved by the Generalized Kettele Algorithm [3].

, In this paper, we propose a more general optimization model and develop an associated

* Further Generalized Kettele Algorithm (FGKA). Thereby, the optimal problems which can be

solved by FGKA will not confine to a simple numerical objective function or a single constraint.

Exmle1 An Integer Lexicographic Problem

* Max (Yk1XkJ, y/k IXk,.., y~ ki)X

s. t.

z' )(Xk) Cj, i=1,2... m, (3)
k03
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where ci is a constant, i =1, . m; Xi=(xj xi), and xj is a real variable,

i, j = 1, ... ,k; f I** f k all are strictly increasing functions with real values, and

Yi (x1) = f Xxj x- 2~ 2), Y~~~jfj(~),k, j= 1. I g1 gjal;r

strictly increasing functions with real values, and z1 (xi) = g1 (x1), z2 (x= 2  1 2)

.z (;k) =g ((k?1,X Xk) 1= g (Zi1, xi > 2, j = 1,... ,lm; (y~l)....))belongs to I-dimensional

real vector space R' with the Lexicographic ordering.

The Lexicographic problem is a special case of our still more general optimiztion modei.

And as we know, an integer bottleneck problem and an integer time-cost problem are in some

* sense special cases of the integer Lexicographic problems.

0

Jill!
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2. Still More General Optimization Model and FGKA

Now, let us give the still more general optimization model. Suppose Si is a countable
w e l o r e r e d s e t , S , = x 0 1 (2 )}

well ordered set, s <= (x <i < .... , i = 1,2..., k. Y, Z both are ordered sets. In Z there

exists a maximal element zo (or -0). Let xi represent a variable called a "decision" variable,

xi(xie Si, and i= (Xlx 2, . . xi). Let fl , 1 fk; gl, g2, .-. . , gk all be strictly increasing

functions, with yl(X1) = fl(X), y2 rX2)=f 2 (yi,x2) ... Yk(Xk)=fk(yk-1,xk) andy (e Y; zl(xl)

= gl(X ), Z2 (rX =g 2 (z1,x 2 ),.... Zk( ')=gk(zk.l,Xk) and zi r Z, i = 1,2 . .., k; for i> 1,

gi(Zo, xi) = zo, Zi-l= gi(zi-1, xi( 1 )).

Call xi an allocation of order i, Yi a payoff of order i, and zi a cost of order i,

i= 1,2.... k.

, The still more general optimization model is

Max Ykx,

'I. s.t.

Zk (rX -- C, (4)

where cE Z\{zo}, ;k=(x ,x 2 .... ,Xk), xjE Sj ,j= 1,2, ... ,k.

Assume that (4) and zj> c, j = 1, . . . , k all have solutions.

Definition"la Allocation xi dominates allocation ' if

(ii) Y i Yi (i) and zi xi z i) < zo, or

(ii) Yi(xi)= y(;')and z,(xi)<z jz,,or

* (iii) zi( ) =z

We write x, > xi . We also say the corresponding payoff-cost pair (yi, zi) dominates
y, z and write ( Yi, Zi)

Def nJtion. 2 . i is called an undominated allocation of order i if there exists no X'i, such that

xi >xi . We also say the corresponding payoff-cost pair (yi , zi) is undominated.

A-
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Definition 3: A complete sequence of undominated allocations of order i (ending in xi say) is

() .(S)
a sequence of undominated allocations x. x each of order i, such that

0i) y i(x i 5< ... < i(xis),

(ii) zi(xi <  
... < xi ), and

(iii) If -Xi is undominated and yields a payoff-cost pair distinct from those of
_(.1) _(S (.. SY) and
xi x...i x ,then yi~x)>yi(x and z i

We call the corresponding sequence (1)) . (Yi), z a complete undominated sequence of

payoff-cost pairs of order i.

We now present an algorithm to solve this more general optimization model (4). We

shall call it the Further Generalized Kettele Algorithm (FGKA).
M(s (s ,+ 1)

S Compute yli =fxl),zl=gl() for i=1,2, . . . sl, where z, <c, andz 1  >c.

There exists such sl since Z1(xi) = zk(xl, X2( 1 ), .. .. , xk(1 )) and zk _ c, zl > c both have

solutions. (y 1 0z 1)) (Y, 1z s)) constitute a complete sequence of undominated payoff-cost

pairs of order 1 not violating the cost constraint.

SCompute y 2 1=f 2 (Y ,x~,Z2 j=J 2 Z0 0,() for i = 1,2, .... ,sl;j = 1, 2 . . . such that

z2ij < c. Enter the payoff-cost pair (Y2ij, Z2ij) in row i, column j of a table of payoff-cost

pairs.
i (1) in th

S The lowest cost undominated pair , Z2)) in the table is clearly (Y211, z211) if z211 -

c. If z211 > c, there is no solution.
*To determine (Y(2),Z2), find (Y2ij,Z2ij)such that y2ij>Y2 with z2iminimum among

entries satisfying this inequality. If several entries of identical cost qualify, choose the highest

payoff Y2ij. If several entries of identical cost and identical highest payoff qualify, choose one

• at random, since all are equally cost-effective. The payoff-cost entry so chosen is (y2 -2

Continue in this fashion, i.e. having found (y2 , z 2 2 2) is the pair

(Y21i,z 2 J such that y21 >Y2 with Z2ij minimum among pairs satisfying this inequality. In case

of ties, follow the rules for breaking ties described above.
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Stop at (Y2 , z2 ), where s2 is determined so that z2 -<c, while z2  > c. Such S2

exists if there is a solution to (4).
1 (1) (1)~ 2 (S2)The sequence Y2 , 2... , Z2  obtained this way constitutes a complete sequence

of undominated payoff-cost pairs of order 2 not exceeding the cost limit c.

Se 4 Proceeding in a similar fashion using the payoff-cost pairs (Y3ij, Z3J), where

Y31 =f3 ,Y2 ,Z 3 ), z3ij=g3z 2 ,x3) for i = 1,2 .. . s2; j = 1,2 .... , such that zi < c, obtain

a complete sequence of payoff-cost pairs not violating the cost constraint. Continue in this

fashion until at the kth stage, arrive at the complete sequence of undominated payoff-cost pairs_,{(1) ( ,1) 0k'

Yk, Z k). (yk, z'k'),where zks :  c,whilezk >C.
(So)

S Finally, yk, is the maximum payoff achievalbe under the cost constraint; the(So.-(SO (S k) , 1 )

corresponding cost is zk . The allocation x yielding the payoff-cost pair (yk Z ) is the

solution to (4).

Theorem 1. The payoff-cost pair (y , zk ) and the allocation x obtained using the

FGKA is the solution to the more general optimal model (4). That is, it is the maximum payoff
(s)achievable with corresponding cost zk < c ,the cost constraint.

Proof. The argument of the proof is similar to that of the original theorem about the GKA (p.

221, [3]). In the original proof two lemmas are used. They are as follows.

Lemma 4.5. (a) Every payoff-cost pair of order 2 obtained by GKA is undominated. (b)

Every undominated payoff-cost pair of order 2 may be obtained by the GKA.

Lemma 4.6. Let (Y2, z2) :, (Y2 ', z2'), Y3 = f3 (Y2 , X3 ), Z3 = g3 (Z2 , X3 ), Y3' = f3 (Y2 ', X3),

and z3' = g3 (z2', x3). Then (Y3, z3) (Y3, z3').

,.

0r ri
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The two lemmas are correct for FGKA. The proof of the former is almost word for word

repeat of the original lemma proof. The proof of the latter is little different from the original.

By the hypothesis of Lemma 4.6,

(i) Y2 > Y2' and z2 !5z 2' < Zo, or

(ii) Y2 = Y2' and z2 < z2' < zo, or

(iii) z2' = Zo.

In cases (i) and (ii), we know (Y3, z3) :, (Y3', z3'). In case (iii), this also holds since g3 is

monotone and z3' = g3 (z 2 ', x3) = zo. Hence, Lemma 4.6 holds for FGKA.

,4,. Using the two new lemmas and repeating the argument of the proof of the original

theorem 4.7 word by word, we get a proof of Theorem 2.

* •Q.E.D.

Now we show that the general optimization model (B-P) under multiple constraints is a

special case of the still more general optimization model (4).

Theorem 2. The problem

Max YkrXk),

S. t.

-,,. Z, lXk)!Ci, i=1,2, ... ,m, (5)

Xk(X X2,....Xk)GSIXS2X...XSk,

where Sj, Yi, xj, j, Yj, zi all are as in the more general optimization model; Z(i) is an

ordered set without assuming a maximal element, is a special case of the still more general

. optimization model (4).

Proof. Let Zo = Z(1) x Z(2) x ... x Z(m). Define an equivalence relation a among elements of Zo as

follows. For ai, bi e Z(i), i = 1, 2, . . . m,

(a,, a2 .... am) (bl, b2 , .... , bm)
*1

A4*

...
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if and only if either

il (i) ai > ci for some i = 2, 3,. .. m, and bj > cj for some j = 2, 3,. .. m, or
(ii) aiciand bici, i=2,3, m,andal=bj.

Thus we get a collection Z of classes of equivalent elements of Zo. Denote the class including (ci,

....0. ..... Cm) by c, (Z k;k), Z(k) rx .k) z, k1xk)byzkrtk). Define

(a1, a2, . .. , am) > (bl, b2, . . . , bin)

if and only if either

(i) (a,, a2, ..... am) = Z0 o (bl, b2 , .... bin), where zo is the class whose one of

components 2, 3, . . . , m is greater than corresponding ci, or

(ii) zo # (a,, a2, . .. , am) or (bl, b2, . . . , brn), where a, > bl.

Then Z is an ordered set with a maximal element zo.

Here we do not distinguish a clas- from its representatives.

So, (5) is equivalent to a (4) in which zk e Z, c e Z\{zo}. That is, (5) is a special

case of (4).

Q.E.D.

Similarly, we can prove corollary 1. In fact, it can be obtained as a conclusion of

Theorem 1 itself, also.

Corollry 1. The integer Lexicographic problem (3) is a special case of the more

general optimization model (4), or (5).

p,

P.



10
%1

%

3. An ExamDle using FGKA

E. Fill Rate Model (compare it to [3], p. 209)

max

"f S.t.
4

i-1

*' 4

Y nici-<Co,

, i=I (6 )

ni > 0, integer, i = 1, 2, 3, 4,

where - = (nl, n2, n3, n4) is a spares allocation; ci is the price of part i, co is a spares

budget constraint; wi is the weight of part i, wo is the limit weight of a spare parts kit, R(-)

is the fill rate, n-r (X ,u)' xi,
I. eI'x

11 - 0 j !

where - 0. Here we assume that

(i) Demands for spares of type i at a maintenance depot is governed by a

Poisson process with demand rate Xi.

" (ii) Enough repair facilities are available at the depot so that repair of a failed

unit is initiated as soon as it is received.

(iii) The mean time to repair a failed unit of type i is ui.

(iv) The cost of purchasing ni units of type i is nici.

(v) There are k part types, i.e., i = 1, 2, . . . , k.

In (6) there are two constraints, which says, that the budget is not to be exceeded nor is the

allowed total weight (or volume).

1
.



To solve the example, first let Si = {O, 1,2 .. }, Y the set R1 of real numbers. To

define Z, first define an equivalence relation a in the 2-dimensional real vector space R2 as

follows.

(U 1 , U 2 ) (V 1 , V2 )

if and only if either

(i) ul > wo and v1 > wo, or

(ii) ul, v !5wo and u2 
= V2

Denote (u1 , u2) by zo if ul > wo. Then let Z be the collection of equivalence classes of elements

in R2. Define an order relation > in Z:
N',

(u1 , u2) > (v1 , v2)

* if and only if either

(i) ul > wo and v, < wo, or

(ii) ul, v, wo and u2 > v2.

Denote (wo, co) by c.

The decision variables are to be the number of spares of the k different types, (nl, n 2,

n3, n4). The functions of fi and gi of the more general model are given by

f 1(nj)= , e

j-0

f,(R, ni) =R +X ,nl '-Y
., j.0 j!t

gl(nj) = (w, nj, cl nj),

gi ((w, c)), ni) = (w, c) + (wi ni, ci ni).

So, all fi are strictly increasing functions. And all gi are increasing in Z, strictly increasing

*in Z\(zo}.



For example, consider the situation of a budget co = 1500 (in dollars), weight limit wo

= 100 (in kg), and demand, repair, weight and cost data as shown in Table 1.

Mean Time
Demand Rate to Repair kg weight Dollar Cost computed

Part (per hour) Failed Part of part, of part, value: Xi i
Type, i Xi Voi  w i ci

1 .01 100 30 200 1.0

2 .02 150 10 100 3.0

3 .03 60 40 300 1.8

* 4 .01 200 5 250 2.0

Table 1. Input Data for Spares Allocation

kTo simplify the computation throughout, we drop the denominator to 11 i ( i

V it is constant throughout and just compute the fill rate numerator 1 R(n1), where

=n-, (X,!J) -
Ri(n) I - e i = 1, 2, k

•~~ .' j- J . .

The steps taken in carrying out FGKA are the following.

* (1) Noting that ni =0, 1,2, .... in Step 1 we get

..:. ,- -X , (1.0), -1.0
-' "f fl(n l)= , ? , i e 01 1 ~ -j e
, , .,. j-0 .!

* and

g1(nl) (w1 n1 , cl n1) = (30nl, 200n,),

and

* • c = (wo, Co) = (100, 1500)

.. • 1
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we get the complete sequence of undominated payoff-cost pairs of order 1,

(Yi 1) 'z (I))= (0, (0, 0)), (yi1 (2), Z, (2)) =(.00368, (30, 200)),

-J(yi (3), Z1 (3)) = (.00736, (60, 400)), (yi1 (4), Z 1 (4)) = (. 00 9 20, (9 0, 6 00)).

(2) Noting that n2 = 0, 1, 2, .. , in Step 2 and Step 3,

f2(R1, n2) = R + X2 I - e IR+.02X -e

and

g2((w,c), n2) = (W, C) + (10 n2 , 100 n2),

we get Table 2.

The complete sequence of undominated payoff-cost pairs of order 2 is shown by

p ~t .~- in Table 2. Here S2 =9.

(3) Since n3 =0, 1,2,...in Step 4

f3(R, n3) = R + Xj I e"'=R+.03X I j e

and

g3((W, c), n3) = (w, c) + (40 nl3 , 300 n3),

we obtain Table 3. Here S(3) . 9, i.e., the complete sequence of undominated payoff-cost pairs of

order 3 shown in Table 3 has 9 elements.

(4) Noting that n4 = 0, 1, 2, . . in Step 4
n 4'1(4IJ 4n4-1(20)j. -0

e (2.0) 2e
f4(R, n4) =R + X.4 e

9 4((W, c), n4) =(W, C) + (5 n4 ,250 n4),

Thus we get Table 4.

'! , W I 1
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The complete sequence of undominated payoff-cost pairs of order 4 is

0 , 0, 0, 0; 0, 1, 0, 0; 0, 2, 0, 0; 0, 3, 0, 0;

0, 4, 0, 0; 0, 5, 0, 0; 1, 4, 0, 0; 1, 5, 0, 0;

2, 4, 0, 0; 2, 4, 0, 1; 2, 4, 0, 2; 1, 5, 0, 3.

(5) Finally, a solution of example 3 is

(nl, n2, n3, n4) = (1, 5, 0, 3).

with Max (n) = .02576.

[(j)

n n2

NS 0 1 2 3 4 5 6 7 8 9 10

FRN 0 .00010 .00548 .00996 .01332 .01533 .01634 .01677 .01694 .01699 .01701

WC (0, 0) (10,100) (20,200) (30,300) (40,400) (50,500) (60,600) (70,700) (80,800) (90,900) (100,1000)
0 0,0 01 02 03 04 05 0,6 0,7 0,8 0,9 0,10

0 0 .00010 .0054i .00996 .01332 .01 3 .01634 .01677 .01694 .01699 .01701

(0,O) (0,0) (10,100) (20,200) (30,300) (40,400) 40,500) (60,600) (70,700) (80,800) (90,900) (100,1000)
1 1,0 1,'1 1,2 1,3 1,4 .5 1,6 1,7

.00368 .00368 .00468 .00916 .01304 .01700 .01 .02002 .02045
(i) (30,200) (30,200) (40,300) (50,400) (60,500) (70,600) ,700) (90,800) (100,900)

2 2,0 2,1 2,2 2,3 2,4
.00736 .00736 .00834 .01284 .01732 .02068

(60,400) (60,400) (70,500) (80,600) (90,700) (100,800)

3 3,0 3,1
.00920 .00920 .01020

(90,600) (90,600) (100,700)

4 Table 2 (Y2ij, Z2ij)

Notation: NS - number of spares, FRN - fill rate numerator, WC - weight and cost.

I

I



n
3

NS 0 1 2

FRN 0 .GC4959 .013885

Vic (0, 0) (40, 300) (80,600)

0, 0 0,0,0 0, 0, 1 0, 0,2

0 0 .00496 .01389
(0, 0) (0, 0) (40, 300) (80,600)

0,1 0,1,0 0,1,1 0,1,2

.00100 .00100 .00596 .01489
(10,100) (10,100) (50,400) (90,700)

0,2 0,2,0 0,2,1 0,2,2

.00548 .00548 .01044 .01937
(20,200) (20,200) (60,500) (100,800)

0,3 0,3,0 0,3,1

.00996 .00996 .01492
(i) (30,300) (30,300) (70,600)

*Z 2  0,4 0,4,0 0,4,1

.01332 .01332 .01828
(40,400) (40,400) (80,700)

I. 0,5 0,5,0 0,5,1

.01533 .01533 .02029
(50,500) (50,500) (90,800)

1,4 1,4,0

.01700 .01700
(70,600) (70,600)

1,5 1,5,0

. .01901 .01901
(80,700) (80,700)

2,4 2,4,0
.02068 .02068

* (100,800) (100,800)

Table 3 (Y3ij , Z3ij)

II



01

0R 0 .00135 .00405 .00675 .00855 .00945 .00981
__0__) (0, 0) (5, 250) (10,500) (15,750) (20,1000)1(25,1250) (30,1500)

0,0, 0 0, ,0,0 0,o,0, 1 0,10,0,2 0,0,0,3 0,1,0,4 0,10,0,5 0006

.010 .00, .00135 .00405 .00675 .00955 .01045 .08

(0,10) (0,10) (15,3250) (10,500) (15,750) (20,1100) (25,1350)(0150

0,1,0 0,1,0,C 0,2,0,1 0,1,0,2 0,1,0,3 0,1,04 0,1,0,5
.00100 .00500 .00683 .0055 .00775 .0105 .01453

(10,100) (10,10(125,350) (20,600) (25,850) (30,1200) (35,1350)

I' 0,2,0 0,2,0, 0201 0,2,0,2 0,2,0,3 0,2,0,4 0205
.05858.00683 .00953 .01223 .01403 .01493

(20,200) (20,20 )(25,450) (30,700) (35,9050) (40,1200)(4150
Z3 0,3,0 0,3,0,1 0,3,0,1 0,3,0,2 0,3,0,3 0,3,0,4

A.00996 .0039 .01131 .01401 .0207 .0181
(30,300) (30,30C) (35,550) (40,800) (55,1050) (50,1300)

0,4,0 0,4,0,0 0,4,0,1 0,4,0,2 0,4,0,3 0,4,0,4
.01533 .01533 .01678 .01737 .022007 .02187
(40,400) (40,40 1(45,650) (50,9000) (55,1150)1 (60,1400)________

0,5,0 0.5,0, 0,5,0,1 0,5,0,2 1,5,0,3 0504

.01700 .0170 .01835 .02105 .02375
* (70.600)1(70,60 (65,850) 1(70,1100) (75,1350)________

1.5,0 1,5,0, 1,5,0,1 1,5,0,2 1,5,0,3
y.01901 .01901 .02036 .0230 .02/576

(80,700) (80,70() (75,950) (80, 0 ) (85t10

24,0 2,4,0,) 2,4,0,1 ,01.02068 .0206 .0220V .02473
1a'(100,8001(100,8060 (85,1050) (90,1300)

Table 4 (Y4ij, Z4ij)

R P
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4. Another Form of the More General Ootimization Model

Corresponding to (1), consider an optimal design problemi k

i:min 7,ci ni

!."i ~t. -[ 1 -(1 p i)n

s.t. ( - ) R, (7)

ni 0 0, integer,

where R is a limit reliability, ci, ni, pi are as in (1).

Generally, let us consider a resolvable problem

- ;3 rin yk r4

s.t. ZkX4 2t C, (8)

* where 'k, Yk, Zk and c are as in (4). The only difference is that in Z there exists a minimal

element zo, but a maximal element zj< c has a solution, j = 1,..., k. And

Sj = {... < xj (2)< xj( 1 )}, 1, 2, ... , k. (9)

For (7), select positive integers ml, .... mk large enough. Let sj = { 0 <... < mj - 1

< mj}, Y1(x1) = fl(x 1) = c1x, Y2 (X = f2(Y1 , x2) = y1 + C2x2 , ... , y,({I = fk(Yk-1, XJ =

4. Yk-1 + Ck Xk; Z =(X1) 0 - (12 = z( - p2) x )  (1 -(1-p2) M2 .

1
Zk = Zkl(0 - (1 - Pk)Xk) Mk . Then (7) is an example of (8).

(1 -(1-Pk)

We point out that (8) is another form of the more general optimization model (4). Let

S,* = {xi( 1 ) Zi xi( 2 ) Z ... } be an ordered set with ordering A, i = 1, .... k. That is xi(u) Z

xi(v) if and only if xi(u) > xi(V). Define a new ordering I- in Y such that azlb if and only if a >

b. Denote the Y with the new relation Z by Y*. Similarly, we get Z*. Thus zo is a maximum

in Z* about the relation z. Now, the problem (8) gets a new form as follows.

max Yk( xk),

where the sign max is about the new relation AI in Y* and the equality sign is the same with the

original.



Theorem 3. The problem (8) is just another form of the still more general optimization model

(4).

VHence, we can use the FGKA solving (8) or (10).

Furthermore, let us look at another optimal design problem
kmin Icini

i1

k

i-1
k

w;n; !w,
i.1

where wi is the weight of a part of type i, w is the total weight limit. Other signs are as in

(7).

Generally, we would consider a problem

mn Y k(Xk),
S.t. Zk rIXk) >- C (12)

Zk rk) !<C'

where X,, Yk, Zk, c are as in (8), Zk' e Z', an ordered set with a maximal element z0 , and

C' e Z' - {z0 '}.

Theorem 4. The problem

min yk Y(xk),

s.t. Z (Xk) Ci , i = 1..., m, (13)

Z k X k): C'ii 1 n,zk k ci = , . . . ,

Xk=(xI, .. Xk)E S X. XSk,

(i) (i)where Si, Y, xj, -Xi, yj, all are as in theorem 2, z ' is as zi in theorem 2. The

corresponding gj' takes values in the corresponding set Z'; zj(i) ('j) - gj(i)(zj_1(i), xj) is

increasing and takes values in an ordered set Z with minimum zo, is a special case of (12).

0



Proof. Let 7o = Z(1)x.. . xZ(m). Define an equivalence relation a among elements of Zo as

follows. For ai, bi, Z(i), i = 1 . . , m, (al, . . . , am) = (b, .... bm) if and only if either

(i) ai < ci for some i = 2, ... ,m and bj < c for some j=2, ... m, or
(ii) ai >- ci and bi >! ci, i = 2, .. ... m, and al = bl.

Thus we get a collection Z of classes of equivalent elements of Zo. Denote the class including

(cl, cm) by c, (Zk(l)(k) .... Zk(m)(Xk)) by zk (xk). Define (al .... am) < (bl, .... bin) if

and only if either

(i) (al, ... , am) = Zo * (bl, .... bin), where zo is the class whose one of components

2, 3, ... , m is less than corresponding ci, or

(ii) Zo * (al, . . ,am) or (bl, . .. , bin), where al < bl.

* Then Z is an ordered set with a minimum zo. Similarly, let Zo' = Z'( 1 )x .. xZ'(n). Define an

equivalence relation -among elements of Zo' as follows. For ai, bi e Z'(), i = 1, .. . n,

(al .... an) - (bl .... bn) if and only if either

(i) ai > ci for some i = 2, ... ,n and b} > ci for some i=2 .... n, or

. (ii) ai !5ci', bi-<5ci', i =2, .. .,n, and al = bl.

Hence we get a collection Z' of classes of equivalent elements of Zo'. Define the class including

(0 , ..... Cn') by c' and (Zk'(1)(rk) . . . zk'(n)Xk)) by Zk'(Xk).

Define (al, ... , am) > (bl, ... , bn) if and only if either

(i) (al, . . . ,an) = Zo' (bl, ..., bn), where zo' is the class whose one of components

S2, . . . , n is greather than corresponding ci', or

(ii) Zo # (al, . . . ,an) or (bl, .. . , bn), where al > bl.

Then Z' is an ordered set with a maximal element z0'.

* Therefore (13) is equivalent to a (12) in which zk E Z, c e Z\{zo}, Zk'E Z',

c E Z\{zo'}. That is, (13) is a special case of (12).

Q.E.D.

0
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